Update on Fluorescence:

H. A. Tanaka Princeton University

At the last Meeting:

Bruce reported that Dmitri has finished SVD analysis:

- Documented in JHU Report No. 7
- Linear algebra technique (singular value decomposition)
 determines features with characteristic excitation and emission curves.
- Very complicated and sophisticated analysis

Basic results:

- Analysis covers excitation from 250-380 nm
- Analysis covers emission from 270-480 nm
- Four signficant features found: excitation and emission curves determined for each.
- Absolutely normalized fluorescence rate/photon/pathlength

Results of SVD analysis

Things to investigate:

- We need to assign a lifetime to each system:
 Compare emission with time-resolved measurements and match
- Compare with existing data for compatibility:
 predict emission/excitation curves and compare with measurements

Assigning Lifetimes

open circles: emission from SVD

solid circles: emission from *t*-resolved

SVD Feature 1:

 Matches best with green But does not match well

SVD Feature 2:

Matches best with green matches very well

SVD Feature 3:

 Matches best with red Except for tail

SVD Feature 4:

Matches best with black

Results from Assigning Lifetimes

SVD Feature 1:
 Does not match any of the fluorophores:
 This is expected: the excitation curve falls to zero around 280 nm

Time-resolved measurement occurs at 285 nm: feature was not excited

- SVD Feature 2
 Matches green very well: 14 ns lifetime
- SVD Feature 3: Roughly matches blue curve (Vitamin E fluorophore): The emission/excitation has been obtained in steady-state meaurements: Disagreement between steady-state/t-resolved measurement Nonethless, assign 1 ns lifetime.
- SVD Feature 4: Mathches black curve. Assign 33 ns lifetime.

Others may be too weak to be identified by SVD analysis One fluorophore (the strongest!) is left without a lifetime.

Inclusive versus Exclusive

With the SVD results, we can predict:

- For a given input wavelength, the contribution from each fluorophore
 Output spectrum should be weighted sum of emission from each fluorophore
 → emission curve

Sum of exclusive (SVD) should equal inclusive (ex/em curve):

Compare the predicted inclusive curves with independent measurements (courtesy of Anna Pla/Shannon Maza)

August 2004

Emission Curves

250-320 nm emission curves (solid), SVD prediction (dots) Good agreement except at 280 nm

Excitation Curves

280-350 nm excitation curves (solid), SVD prediction (dots)

This is very encouraging:

Many corrections (lamp strength, inner filter, detection efficiency, etc.) go into making these curves.

Agreement means that these are being handled consistently.

Toy MC Studies

A number of questions need to be answered:

- Which, if any, of the fluorescence processes are important?
- Do we need to worry about multiple fluorescence?
- How does the fluorescence appear in the detector (time/wavelength)?
 How is affected by other processes, such as scattering?
- Is there a simple "effective" model that is good enough for us?

A simple photon-transport simulation has been developed: Simulates some of the processes identified thus far:

- Absorption
- Scattering
- 3 fluorescence processes (1, 14, 33 ns lifetimes)

Unidentified fluorophore with unknown liftime is left out for now.

Fluorescence Rate:

Generate photons at r=0, $\lambda=270$ nm Observe at $R=10,\ 25,\ 100,\ 540$ cm

Study 270 nm source

- At 10 cm:
 Some direct light observed
- At 25 cm:
 Almost all of it fluoresces
- Significant multiple fluorescence 25% relative to single

Multiple Fluoresce results in:

- Complicated time structure Non-exponential
- λ_f of last fluorophore Doesn't "remember" prior events

Evolution of Fluorescence Light:

(black/red/blue/green = all/1 ns/14 ns/33 ns)

- 14 ns fluorophore (blue) is supressed as we move away from source
- 1 ns (red) becomes strong and 33 ns (green) comparable in strength to 14 ns

Multiple Fluorescence via 14 ns system:

(black/red/blue/green = all/1 ns/14 ns/33 ns)

- Fluorescing 1 ns (red) doesn't change things much
- Fluorescing 33 ns (green) results in very complicated time structure

Summary

- JHU SVD analysis is consistent with Fermilab meausurements
- Some of the fluorphores (0.35, 6 ns) may be insignificant
- We do not know the lifetime of the strongest fluorophore
- Excitation behavior < 250 nm (where most of it occurs) is unknown. We are attempting an SVD analysis on the Fermilab data (Vassilios)
- Studies of multiple fluorophore systems started:
 Multiple fluorescence is expected
 Time structure is complicated: can we hope for a simple model?